Skip to content

This article takes a quick tour of the main features of googlesheets4. Remember to see the articles for more detailed treatment of all these topics and more.

read_sheet(), a.k.a. range_read()

read_sheet() is the main “read” function and should evoke readr::read_csv() and readxl::read_excel(). It’s an alias for range_read(), which is the correct name for this function according to the scheme for naming googlesheets4 functions. You can use them interchangeably. googlesheets4 is pipe-friendly (and reexports %>%), but works just fine without the pipe.

read_sheet() is designed to “just work”, for most purposes, most of the time. It can read straight from a Sheets browser URL:

read_sheet("https://docs.google.com/spreadsheets/d/1U6Cf_qEOhiR9AZqTqS3mbMF3zt2db48ZP5v3rkrAEJY/edit#gid=780868077")
#>  Reading from gapminder.
#>  Range Africa.
#> # A tibble: 624 × 6
#>   country continent  year lifeExp      pop gdpPercap
#>   <chr>   <chr>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 Algeria Africa     1952    43.1  9279525     2449.
#> 2 Algeria Africa     1957    45.7 10270856     3014.
#> 3 Algeria Africa     1962    48.3 11000948     2551.
#> 4 Algeria Africa     1967    51.4 12760499     3247.
#> 5 Algeria Africa     1972    54.5 14760787     4183.
#> # ℹ 619 more rows

However, these URLs are not pleasant to work with. More often, you will want to identify a Sheet by its ID:

read_sheet("1U6Cf_qEOhiR9AZqTqS3mbMF3zt2db48ZP5v3rkrAEJY")
#>  Reading from gapminder.
#>  Range Africa.
#> # A tibble: 624 × 6
#>   country continent  year lifeExp      pop gdpPercap
#>   <chr>   <chr>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 Algeria Africa     1952    43.1  9279525     2449.
#> 2 Algeria Africa     1957    45.7 10270856     3014.
#> 3 Algeria Africa     1962    48.3 11000948     2551.
#> 4 Algeria Africa     1967    51.4 12760499     3247.
#> 5 Algeria Africa     1972    54.5 14760787     4183.
#> # ℹ 619 more rows

or by its name, which requires an assist from the googledrive package (googledrive.tidyverse.org):

library(googledrive)

drive_get("gapminder") %>% 
  read_sheet()
#>  Reading from gapminder.
#> # A tibble: 624 × 6
#>   country continent  year lifeExp      pop gdpPercap
#>   <chr>   <chr>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 Algeria Africa     1952    43.1  9279525     2449.
#> 2 Algeria Africa     1957    45.7 10270856     3014.
#> 3 Algeria Africa     1962    48.3 11000948     2551.
#> 4 Algeria Africa     1967    51.4 12760499     3247.
#> 5 Algeria Africa     1972    54.5 14760787     4183.
#> # ℹ 619 more rows

Note that the name-based approach above will only work if you have access to a Sheet named “gapminder”. Sheet names cannot be used as absolute identifiers; only a Sheet ID can play that role.

For more Sheet identification concepts and strategies, see the article Find and Identify Sheets. See the article Read Sheets for more about reading from a specific (work)sheet or ranges, setting column type, and getting low-level cell data.

Example Sheets and gs4_browse()

We’ve made a few Sheets available to “anyone with a link”, for use in examples and docs. Two helper functions make it easy to get your hands on these file IDs.

  • gs4_examples() lists all the example Sheets and it can also filter by matching names to a regular expression.
  • gs4_example() requires a regular expression and returns exactly 1 Sheet ID (or throws an error).
gs4_example("chicken-sheet") %>% 
  read_sheet()
#>  Request failed [429]. Retry 1 happens in 60.1 seconds ...
#>  Request failed [429]. Retry 2 happens in 7 seconds ...
#>  Reading from chicken-sheet.
#>  Range chicken.csv.
#> # A tibble: 5 × 4
#>   chicken                 breed            sex     motto                  
#>   <chr>                   <chr>            <chr>   <chr>                  
#> 1 Foghorn Leghorn         Leghorn          rooster That's a joke, ah say,…
#> 2 Chicken Little          unknown          hen     The sky is falling!    
#> 3 Ginger                  Rhode Island Red hen     Listen. We'll either d…
#> 4 Camilla the Chicken     Chantecler       hen     Bawk, buck, ba-gawk.   
#> 5 Ernie The Giant Chicken Brahma           rooster Put Captain Solo in th…

If you’d like to see a Sheet in the browser, including our example Sheets, use gs4_browse():

Sheet metadata

gs4_get() exposes Sheet metadata, such as details on worksheets and named ranges.

ss <- gs4_example("deaths")

gs4_get(ss)
#> 
#> ── <googlesheets4_spreadsheet> ───────────────────────────────────────────
#>  Spreadsheet name: deaths                                      
#>                ID: 1VTJjWoP1nshbyxmL9JqXgdVsimaYty21LGxxs018H2Y
#>            Locale: en_US                                       
#>         Time zone: America/Los_Angeles                         
#>       # of sheets: 2                                           
#> # of named ranges: 2                                           
#> 
#> ── <sheets> ──────────────────────────────────────────────────────────────
#> (Sheet name): (Nominal extent in rows x columns)
#>         arts: 1000 x 26
#>        other: 1000 x 26
#> 
#> ── <named ranges> ────────────────────────────────────────────────────────
#> (Named range): (A1 range)    
#>     arts_data: 'arts'!A5:F15 
#>    other_data: 'other'!A5:F15

sheet_properties(ss)
#> # A tibble: 2 × 8
#>   name  index         id type  visible grid_rows grid_columns data  
#>   <chr> <int>      <int> <chr> <lgl>       <int>        <int> <list>
#> 1 arts      0 1512440582 GRID  TRUE         1000           26 <NULL>
#> 2 other     1  278837031 GRID  TRUE         1000           26 <NULL>

sheet_names(ss)
#> [1] "arts"  "other"

sheet_properties() and sheet_names() are two members of a larger family of functions for dealing with the (work)sheets within a (spread)Sheet.

The metadata exposed by gs4_get() is also revealed whenever you print an object that is (or can be converted to) a sheets_id (an S3 class we use to mark Sheet IDs).

gs4_get() is related to googledrive::drive_get(). Both functions return metadata about a file on Google Drive, such as its ID and name. However, gs4_get() reveals additional metadata that is specific to Drive files that happen to be Sheets, such as info about worksheets and named ranges.

Writing Sheets

The writing functions are the most recent additions and may still see some refinements re: user interface and which function does what. We’re very interested to hear how these functions feel in terms of ergonomics.

sheet_write() writes a data frame into a Sheet. The only required argument is the data.

df <- data.frame(x = 1:3, y = letters[1:3])

ss <- sheet_write(df)
#>  Creating new Sheet: capless-sambar.
ss
#> 
#> ── <googlesheets4_spreadsheet> ───────────────────────────────────────────
#> Spreadsheet name: capless-sambar                              
#>               ID: 1n6qT3CaLiWqVOTHS0T3O_cIrD2KeHDctMMKsJTsbJDU
#>           Locale: en_US                                       
#>        Time zone: Etc/GMT                                     
#>      # of sheets: 1                                           
#> 
#> ── <sheets> ──────────────────────────────────────────────────────────────
#> (Sheet name): (Nominal extent in rows x columns)
#>           df: 4 x 2

You’ll notice the new (spread)Sheet has a randomly generated name. If that is a problem, use gs4_create() instead, which affords more control over various aspects of the new Sheet.

Let’s start over: we delete that Sheet and call gs4_create(), so we can specify the new Sheet’s name.

googledrive::drive_trash(ss)
#> File trashed:
#>  capless-sambar <id: 1n6qT3CaLiWqVOTHS0T3O_cIrD2KeHDctMMKsJTsbJDU>

ss <- gs4_create("testy-hedgehog", sheets = df)
#>  Creating new Sheet: testy-hedgehog.
ss
#> 
#> ── <googlesheets4_spreadsheet> ───────────────────────────────────────────
#> Spreadsheet name: testy-hedgehog                              
#>               ID: 1eH3PQzI1mAVCzmik6QpFBuPPryL4syBa4OhdR2fr5FU
#>           Locale: en_US                                       
#>        Time zone: Etc/GMT                                     
#>      # of sheets: 1                                           
#> 
#> ── <sheets> ──────────────────────────────────────────────────────────────
#> (Sheet name): (Nominal extent in rows x columns)
#>           df: 4 x 2

sheet_write() can write to new or existing (work)sheets in this Sheet. Let’s write the chickwts data to a new sheet in ss.

sheet_write(chickwts, ss)
#>  Writing to testy-hedgehog.
#>  Writing to sheet chickwts.
ss
#> 
#> ── <googlesheets4_spreadsheet> ───────────────────────────────────────────
#> Spreadsheet name: testy-hedgehog                              
#>               ID: 1eH3PQzI1mAVCzmik6QpFBuPPryL4syBa4OhdR2fr5FU
#>           Locale: en_US                                       
#>        Time zone: Etc/GMT                                     
#>      # of sheets: 2                                           
#> 
#> ── <sheets> ──────────────────────────────────────────────────────────────
#> (Sheet name): (Nominal extent in rows x columns)
#>           df: 4 x 2
#>     chickwts: 72 x 2

We can also use sheet_write() to replace the data in an existing sheet.

sheet_write(data.frame(x = 4:10, letters[4:10]), ss, sheet = "df")
#>  Writing to testy-hedgehog.
#>  Writing to sheet df.
read_sheet(ss, sheet = "df")
#>  Reading from testy-hedgehog.
#>  Range ''df''.
#> # A tibble: 7 × 2
#>       x letters.4.10.
#>   <dbl> <chr>        
#> 1     4 d            
#> 2     5 e            
#> 3     6 f            
#> 4     7 g            
#> 5     8 h            
#> # ℹ 2 more rows

sheet_append() adds one or more rows to an existing sheet.

ss %>% sheet_append(data.frame(x = 11, letters[11]), sheet = "df")
#>  Writing to testy-hedgehog.
#>  Appending 1 row to df.
read_sheet(ss, sheet = "df")
#>  Reading from testy-hedgehog.
#>  Range ''df''.
#> # A tibble: 8 × 2
#>       x letters.4.10.
#>   <dbl> <chr>        
#> 1     4 d            
#> 2     5 e            
#> 3     6 f            
#> 4     7 g            
#> 5     8 h            
#> # ℹ 3 more rows

A related function – range_write() – writes arbitrary data, into an arbitrary range. It has a very different “feel” from gs4_create(), sheet_write(), and sheet_append(), all of which assume we’re writing or growing a table of data in a (work)sheet. range_write() is much more surgical and limited. range_write() makes fewer assumptions about what it’s writing and why.

There is also a family of sheet_*() functions that do pure (work)sheet operations, such as add and delete.

We take one last look at the sheets we created in ss, then clean up.

sheet_properties(ss)
#> # A tibble: 2 × 8
#>   name     index         id type  visible grid_rows grid_columns data  
#>   <chr>    <int>      <int> <chr> <lgl>       <int>        <int> <list>
#> 1 df           0 1104056334 GRID  TRUE            9            2 <NULL>
#> 2 chickwts     1 1091019924 GRID  TRUE           72            2 <NULL>

googledrive::drive_trash(ss)
#> File trashed:
#>  testy-hedgehog <id: 1eH3PQzI1mAVCzmik6QpFBuPPryL4syBa4OhdR2fr5FU>

The article Write Sheets has even more detail.